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CONTRIBUTION TO THE THEORY OF

TIDAL OSCILLATIONS OF AN ELASTIC EARTH.

EXTERNAL TIDAL POTENTIAL

Peter Musen

June 1974



"It is completely idle to say that the tides are caused by the conflict arising

between the motion of the earth and the motion of the lunar sphere, not only

because it is neither obvious nor has it been explained how this must follow, but

because its glaring falsity is revealed by the rotation of the earth being not con-

trary to the motion of the moon, but in the same direction. Thus everything that

has been previously conjectured by others seems to me completely invalid. But

among all the great men who have philosophized about this remarkable effects,

I am more astonished at Kepler than at any other. Despite his open and acute

mind, and though he has at his fingertips the motions attributed to the earth, he

has nevertheless lent his ear and his assent to the moon's dominion over waters,

to occult properties, and to such puerilities"

Galileo Galilei,

Dialogue concerning the two chief world systems, p. 462. Translation by

S. Drake. Univ. of California press. 1953.
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CONTRIBUTION TO THE THEORY OF

TIDAL OSCILLATIONS OF AN ELASTIC EARTH.

EXTERNAL TIDAL POTENTIAL

Peter Musen

ABSTRACT

In the present article we establish the differential equations

of the tidal oscillations of the Earth under the assumption

that the interior of the Earth is laterally inhomogeneous.

We develop the theory using vectorial and dyadic symbol-

ism to shorten the exposition and to reduce the differential

equations to a symmetric form convenient for programming

and for numerical integration. The formation of tidal

"buldges" on the surfaces of discontinuity and the changes

in the internal density produce small periodic variations

in the exterior geopotential which are reflected in the

motion of artificial satellites. The analogues of Love

elastic parameters in the expansion of exterior tidal

potential reflect the asymmetric and inhomogeneous struc-

ture of the interior of the Earth.
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Introduction

In the present article we establish the differential equations of the tidal

oscillations of the Earth under the assumption that the interior of the Earth is

laterally inhomogeneous. We develop the theory using vectorial and dyadic

symbolism, partly to shorten the exposition and, partly, to reduce the differ-

ential equations to a symmetric form convenient for programming and numer-

ical integration.

It has been customary in the investigations of the oscillations of the Earth

to assume the spherical symmetry of internal density and of Lame elastic

parameters. In addition, the undisturbed Earth has been considered to be in

hydrostatic equilibrium. However, we have already reached the stage where

the hypotesis of spherical symmetry cannot explain the results of modern

seismic observations. The analysis of the seismic information provided by the

Peru-Bolivian border earthquake (Dziewonski, 1970), shows that the measure-

ments of the group velocities along the world circling path indicate the existence

of lateral inhofmogeneities in the crust and mantle. Dziewonski also finds that

the measurement of the surface wave dispersion provides the means for the

determination of the internal density distribution. From the analysis of the

information supplied by the Alaska earthquake Toks6z and Anderson (1966),

conclude that the available phase velocity data are sufficiently accurate to

indicate the regional variations and the heterogeneity of the upper 400 km

mantle.
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Arkani-Hamed (1970), suggests the lateral variations of density in the upper

mantle are approx. 3% and of the shear modulus approx. 20%. It is of importance

to extend our understanding of the mechanism of the Earth's tidal oscillations,

partly for the sake of the interesting geophysical problem itself and partly

because the tidal oscillations produce small periodic changes in the geopotential

which are reflected in the motion of artificial satellites. The problem of tidal

perturbations in the motion of artificial satellites recently attracted the atten-

tion of a number of authors (Kozai, 1965), (Newton, 1968), (Kaula, 1969), (Smith

and al. 1971, 1973), (Musen and Estes, 1972), (Musen and Felsentreger, 1973),

(Douglas and al., 1972, 1973), (Lambeck and Cazenave, 1973), (Musen, 1973).

The periodic variations in the geopotential are caused by changes in the internal

density and by the formation of tidal "buldges" on the surfaces of discontinuity

inside the Earth and on the free surface (Biot, 1965). Both changes are small,

but their totality produces appreciable and observable perturbations in the

motion of artificial satellites. A periodic expansion of the tidal perturbations

in the height of satellite GEOS-A above the Earth, in terms of the arguments

of lunar theory, was obtained by R. Estes using the Musen and Estes semi-

analytical theory of tidal effects (1972) in the motion of artificial satellites.

They are quite observable. Estes' expansion contains two long period terms

with amplitudes of 3.8 m. and 5.0 m., respectively.
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A proper theory of the Earth's tidal oscillations, bodily and surface,

can help us to understand some characteristics of satellite motion.

On the other hand, a proper theory of the tidal perturbations of satellites can

give us some insight into the Earth's internal structure and its elastic properties.

The average elastic parameters of the Earth for different satellites were re-

cently obtained by Kozai (1965), Newton (1968), Smith and al. (1971, 1973) and

Douglas and al. (1972). Typically the same value of the elastic factor is used

for all harmonics of a given degree in the expansion of the exterior tidal

potential, irrespectively of the tidal frequency. However, the work of Alterman

and al. (1959) indicates that the elastic response of the Earth is different for

different tidal frequencies. . More computational work is required in order to

understand the full implication of this idea on the theory of motion of artificial

satellites. The parameter of the Earth's elastic response (Love number) to the

tidal force of a given frequency, as it appears in the expansion of the exterior

tidal potential, can be obtained as a by-product of the numerical integration of

the partial differential equation controlling the tidal oscillations. The integra-

tion should be extended over the whole Earth.

In the present article we obtain, starting from the principle of D'Alembert,

a modified form of the Biot (1965) differential equation for the elastic oscilla-

tions, using the apparatus of vector and dyadic analysis. We find the form of

the perturbative terms which disappear together with.the initial deviatory stress.
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The method of Biot includes the effect of the initial stress, as well as the effect

of the additional stress as created by the vorticity of the displacement field.

Biot's formulation is Lagrangian. The displacement of a material point is

given relative to its "initial" position. We incorporate into the differential

equation of the tidal oscillations of the solid Earth the effect of the semi-diurnal

nutation and of the geostrophic force (Molodensky, 1953), (Melchior and Georis,

1968), (Melchior, 1971), and also the effect of the initial deviatory stress. It is

of interest to note that in the Biot formulation the density factor, associated

with the forces of inertia, retains its initial value and there is no necessity to

consider its time variation. The geostrophic force in tidal theory is more

important than in the theory of free oscillations of the Earth, where it is only

a perturbative term. The rotation of the Earth causes only a "fine splitting"

of the spectrum of free oscillations' frequencies and the analytical perturba-

tions technique, similar to one in quantum-mechanics, can be applied (Madariaga,

1972), (Dahlen, 1968, 1972) (Luh, 1973).

In the tidal theory the forced oscillations take place and a large number of

significant tidal frequencies are of the same order of magnitude as the angular

speed of the Earth's rotation itself. As a consequence the geostrophic term in

the differential equation for tidal oscillations is no longer a perturbative term.

In our exposition we remain in the frame of ideas of classical mechanics. Like

Biot, we make use of the principle of D'Alembert, and we assume that the stress
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depends on the instantaneous strain and vorticity. We wish to mention briefly

that another, non-classical, approach to tides is also possible. In modern books

on Elasticity (Eringen, 1968) the principle of heredity is re-introduced. It was

first formulated by Boltzmann (1874) and Volterra (1930). Its basic assumption

is that the present state of the system, including its stress, depends on all of

the system's past history. The constitutive equations must then contain a con-

volution with respect to time. Surely, the principle of heredity falls outside of

the frame of Analytical Mechanics, but it was recently developed for the sea

tides by Munk and Cartwright (1966), (Cartwright, 1968) and successfully

applied to the spectroscopic analysis of tides at Honolulu and on the coast of

East Britain. Despite this we do not use the principle of heredity in the present

work, although we recognize that it deserves considerable attention, because

the Earth might represent a system with memory.

Basic Notations

We introduce the following basic notations:

i, j, k - the basic unit vectors of a rotating system of rectangular

coordinates with the origin and directions rigidly fixed

relative to the "initial" (mean) position of the mantle,

I = ii +jj + kk - the idemfactor,

r - the position vector of the Earth particle in its "initial" (mean)

state P 0 ,
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x, y, z - the rectangular coordinates of Po,

Q - the instantaneous angular speed of rotation of the Earth,

Qo k the constant part of 9,

Q oN - the effect of nutation in n,

Q= o (k + N), (1)

p - the initial density at Po,

S - the initial stress at Po; we assume that S is a symmetric

dyadic,

p - the hydrostatic pressure at Po,

7 - the initial deviatory stress at Po,

S = - pI + T, (2)

U(r) - the initial force function of selfgravitation (per unit of mass)

at P ; the force function of the centrifugal force is not

included,

R - the position vector of the displaced point P at the moment t,

w - the absolute acceleration of the displaced point P at the

moment t,

u = R - r - the elastic displacement of Po at the moment t,

p' - the density at P in the moment t,
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= x + J y + k - the del operator relative to r,
ax ay az

1
E =I (uV + Vu) -the strain dyadic, (3)

C O V u - the local vorticity (4)
2

S= Vu, (5)

then

1-
I x = c x I = -(uV - Vu), (6)

(Ix )' =- Ix

and we deduce from (3) and (6):

Vu =e - Ix C, (7)

uV = E + Ix C, (8)

s - the stress increment added to S at the displaced point

after the deformation caused by the vorticity,

G - the constant of gravitation,

a' - the mean radius of the Earth.



Differential Equations of Tidal Oscillations

Let V be the volume of a portion of matter of the Earth in the initial state

and A be its boundary. At time t they become V' and A', respectively. The

corresponding volume and the oriented surface elements we designate by:

dV, dA, dV', dA'.

Under the influence of the vorticity c a dyadic ab receives the increment

(tx a) b + a (c x b) =o x ab - ab x w,

assuming that c is small. Consequently, under the influence of the vorticity the

initial stress S receives at time t the increment:

Cx S-Sxo

and the total stress becomes:

T =s +S+x S-Sx . (9)

.The principle of D'Alembert for the elastic tidal oscillations of the Earth in the

rotating system coordinates takes the form:

f p' [VRU(R) +VR(W+ )-w] dV' + dA'-T= 0, (10)

where

d 2R dR dQ (11)
w =- + 29x -+--x R+ x ( x R),

dt 2  dt dt

is the absolute acceleration of the displaced point, W is the lunisolar tidal force

function, and p the force function of the additional attraction, as caused by the

tidal changes of the internal density and by the formation of tidal "buldges" on

the surfaces of discontinuity and on the free surface.



12

Taking into account:

?R R 3R R R xR
dA' =-x -dydz + _3!x -dzdx + -x -dxdy, (12)

y z -az x -ax y

and

dA= idydz + jdzdx + kdxdy, (13)

we obtain:

dA' = dA : M, (14)

where the dyadic M has the form:

.R 'R .R R R 'R
M=i 1- f+ j -Tx +-k - x (15)

y z z ax ax ay

Substituting

R=r + u

into (15) and taking the relations

Ix i = kj -jk,

I x j = ik - ki

Ix k =ji -ij

into account, -we obtain after some easy transformations:

M= I - (Ix V) x u, (16)

or, making use of the decomposition

(Ix V) u = uV - IV'u

and of (8), we have

(17)
M= (1 + 0) I- E - Ix co.
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Making use of the law of conservation of matter

p' dV' = pdV,

We can re-write the principle of D'Alembert (10) in the form:

J'[VU(r) + u.VVU(r) + (W + ) - w] dV (18)

+ I dA (M T) = 0,

neglecting the terms of higher order in u. Both integrals in (18) are now taken

over the initial volume and surface, respectively. By applying Gauss' theorem

to (18) we obtain the equation of motion:

pw =p[V(U+W +,) +u'VVU] + V (M'T). (19)

It is of interest to note that p in (19) is the density corresponding to the initial

state. From (9) and (17) we have, neglecting terms of higher order,

MT = (1 + 8) S + s - S x c- E S (20)

and from this relation there follows:

V" (M T) = (1 + ) V S - (VE - VO) S + V s (21)

-(S.V) x -(V'S)x - E"VS.

We have from (3) and (4)

1

E - 2 = + I(V 2UVVU) (22)

Vx V) U = - Vx C
2
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and (21) becomes:

pw= pV(U + W +) + pu'VVU + V.' (23)

+ (1 + 8) V S +c x (V'S) + (Vx ) ' S

- (S ' V)x o- E' VS.

This last equation is the vectorial form of the Biot (1965) differential equation

corresponding to the case of tidal oscillations.

We can set in (11):

S= ,o (k + N), (24)

where Q0 is a constant and %oN is the effect of nutation. Substituting

dR du

dt dt

and (24) into (11) and neglecting the insignificant terms, we have

d2u du dN (25)
w + 2k x du + x r(25)

dt 2  dt dt

+ k x (k x r) + k x (k x u)

+ 2kx(Nx r) +Q2Nx(kx r),

or, expanding the double products,

w = --- 2 0 k x du + o dN x r - V (26)
dt 2  dt dt

-n (I-kk)'u + Q2(kN'r +Nk'r -2rk-N)
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where

S= Q2 (X2 + y 2 ). (27)

There follows from (27):

VV = ! (I - kk)

and taking into account

V [(r x k) (Nx r)] =V(r'Nk'r - r2 k N) (28)

= kNr +Nk'r - 2rk.N,

We can re-write (26) in the following form:

d2 u du dN (29)w - + 2Ok x - or x (29)
dt 2  dt dt

-VE@- 20 ( r x k)'(Nx r)] - uVV4.

Substituting (29) into (19) and setting

V=U+(

We have:

P 2+ 2okx =pV[V+W+ _22 (rxk).(Nxr)] + pu vV (30)

dN
+ p orx - + V s + (1 + 6)V S+c wx (V - S) +(Vx c)' S- (S V) x co - E VS.

dt



16

Taking into account the condition of static equilibrium in the initial state

V S + pVV = 0,

We obtain from (30):

d2u dup -t2 + 20ok -t~pVV + p(u-VVV - W x VV) (31)
\dt2  dt

+pV[W + -- (r x k) (Nx r)] +V-s

dN
+pQrx x- + (V x )'S- (SV) x Cw- E -VS.

dt

We can split the right hand side of the last-equation into the main and perturba-

tive terms by making use of the identity:

uV'VV - Cx VV = V(u'VV)- E'VV, (32)

which can be easily proved using (3)-(6). Substituting (32) into (31), we have:

(d2u du\) (33)
p t2 + 2Qok x - V. s - pOV

dN
+ pVK + plor x - (pe VV + E" -VS)

+ [(V x O) S - (S V) x t],

where we set for brevity:

K = W + + u VV - (r x k) (N x r). (33')

The last two terms disappear if the initial stress is reduced to the hydrostatic

pressure.
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Together with Biot (1965) we assume a linear relation between the additional

stress s and the strain E of the form:

s = B' , (34)

where B is a tensor of the fourth rank with some symmetry properties. Taking

the second law of thermodynamics into consideration Dahlen (1972) obtains:

1 (35)B = C + -(IS - SI), (35)
2

where C is a tensor of the fourth rank, independent of the initial stress. The

components of C define the set of linear isentropic coefficients.

Substituting (2) into (35) we have

B = C + 1 ( - ). (36)

If we consider the Earth to be elastic and isotropic, the number of isentropic

coefficients is reduced to two standard ones, (r ) and ( r ). In this case we

have

C = XI + 2 p(iIi + jIj + kIk). (37)

From (34), (36) and (37) we obtain:

s = +1 (1-.. E - 87), (38)

where 0- is the standard stress dyadic,

o- = XI + 2LE. (39)
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The second term in (38) represents a correction for the deviatory prestress.

Substituting (38) into (33) and making use of (2), we obtain:

p d2  20k x d! =V' - pOVV + pVK (40)
d t2 dt

dN
+ pr x -- .(pVV - Vp) + D,

dt

where

1
D [V(7.. E) - V(T7)] + (Vx ) 7 - (7)x - . .7. (41)

2

represents the "cross-effects" between the strain and the deviatory pre-stress.

The last two terms in (40) are perturbative and disappear together with the

initial deviatory stress. Thus, if we assume that the initial state is in hydro-

static equilibrium we have simply:

d2 u 2 du 1 dN
-- + 20k x - = "or -V VV + VK + r x -. (42)
dt2  dt p dt

This last equation is a slightly modified form of the basic equation of the

Molodensky tidal theory. The differential equation (40) serves as a foundation

for the extension of Molodensky theory to the case when the Earth is laterally

heterogeneous and the initial equilibrium is not a hydrostatic one.

Similarly, again making use of (2) and (38) and the identities

pu VVV = V(pu V) - (u VV) Vp - pCeVV + pC x VV,

p0 = V. (ou) - u.Vp,
u x (VV x Vp) = VV(uVp) - Vp(u.VV),
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we reduce equation (31) to the form:

S + 20kx = V(pu) VV+ V(pu-VV) (43)

\ dt 2

+ pVL + pror dt + V'

+ u x (VV x Vp) - . (pVV - Vp) + D,

where

= W + q - Qo (r x k) (Nx r).

If the initial equilibrium is hydrostatic then the perturbative terms disappear

and equation (43) becomes:

(d 2 u du\

S\ d t + 2k x )= - V (pu) VV + V(u VV) (44)

dN
+ pVT + pGLr x N + V - c

If, in addition, the geostrophic force and the effects of nutation are neglected

we. have:

d2 u (45)
p - -V (pu) VV + V(pu -VV) + pVT. (45)

d t 2

This last equation can serve as a foundation for the theories of oscillations of

the Earth as developed by Takeuchi (1950), Alterman and al. (1959) and Saito

(1971). A simplification of (40) and (42)-(44) is possible if we assume, together

with Molodensky and Melchior, that the polar component of N does not have any
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influence on the tidal oscillations of the Earth. This takes place, for example,

(Melchior and Georis, 1968) if the Earth is an ellipsoid of rotation and the in-

ternal density depends only on the radius-vector and the latitude. In this case

kN= 0

and, as a consequence,

(r x k) (Nx r) = r'kN-r,

T = W + q- Q2r-kN'r,

and VT to be substituted in the differential equations takes the form:

VT = V(W + b) - f22(kNr + Nk'r).

If, in addition, we consider only terms of a given frequency a, where a is a

linear combination of the basic tidal frequencies, then in accordance with the

customary procedure we change the notations and replace

u by uei' t, NbyNeiat,

dN-by iak x Ne i a t

dt

dN
r x by iar x (k x N) = 2iakr 'N - iaV(r kN r)

dt

where the factors at ei a t depend upon the position only. -Substituting these

values into the differential equations, we obtain a linear partial differential

equation satisfied by the new u:

p(- a 2 I + 2ia k x I)*u = V-c - pOVV + pVQ (40')

+ 2iap krN - (pVV - Vp) + D,



21

where

Q = W + + u'VV - o( o + ia) r k N'r,

or

p(- 32I + 2ianok x I)u = V.c - V7(pu) VV (43')

+ V(pu'VV) + pVQ + 2piaG0okr "N

+ u x (VV x Vp) - E - (pVV - Vp) + D.

With the corresponding simplifications of (42) and (44) we have:

(-a2I + 2ialok x I) u = V- - VV + VQ (42')
P

+ 2iafokr N

for Molodensky theory, and

(-a 2 I + 2iaok x I)u = [- V(p) VV+ VU (44')

+V(pu VV)]+ VQ 2iaokr N

for the extension of the Alterman-Jarosch-Pekeris theory. Multiplying (40')

and (42')-(44') by the dyadic

F = I + i/k x I - / 2 kk,

20,/3=

we can solve with respect to u and obtain:

- a2 ( 1 -/3 2 )u = FP. (46)

where P is the right hand side of one of the equations (40') or (42')-(44').
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The differential equation (46), combined with the equation

V2-J = + 47GV (pu), (47)

can serve as a basis for the numerical integration of the tidal effects, starting

from the surface and going,"down." A number of well known continuity condi-

tions must be satisfied in the transition for one layer to the next.

In addition, the form (46) helps to recognize the role of the divisor 1 - 832

which becomes small for a - 2 Qo0

On the Exterior Tidal Potential

The exterior tidal potential (Biot, 1965) acting on the satellite has the form:

Q' =-G V* (pu) dv + YG 8p(u dA) , (48)

J, r - rJ 5 r - rl

where r is the position vector of the satellite and r' is the position vector of the

Earth particle. The first integral in (48) is taken over the volume of the whole

tidally undisturbed Earth. The integrals under the summation sign are taken

over the surfaces of discontinuity, and 8p is the jump in density in transition

from one layer to the other. We can assume, without loss of generality, that u

is the solution of the basic partial differential equation and that the periodic

factor eia t is omitted.

We have:

+co m=+n

1 47 1 2 TIm ( - , a - 0) Ym(', X'), (49)

ir -r'2n + rn+
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where (r', ', 8') are the polar coordinates of the Earth particle relative to the

system connected with the Earth, (r, a, 8) are the polar equatorial coordinates

of the satellite, and 0 is the sidereal time, and Ynm are the normalized com-

plex spherical harmonics. Substituting (49) into. (48) we obtain for the exterior

tidal potential in the system connected with the Earth:

+0 m = +n

' 4G 2n 1 n+ Km* m(8, a - 8),

n=0 m=-n

where

Knm -- ( Y (', X') V (,ou) dv (50)

+ )n Ynm( 0 ', X') 6pu'dA.

The numbers K are the analogues of Love elastic parameters. The choice of
nm

the initial conditions and of the coefficient of the periodic factor associated with

u can be arranged in such a manner, that Knm will depend on the degree n

stronger than on the frequency and the order n. The exact character of this

dependence can be established only by the numerical integration of the differ-

ential equations of the tidal oscillations using an Earth model. Such an integra-

tion should be planned and performed in the near future.
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Conclusion

One of our goals in the present work was to show a connection between the

exterior tidal potential acting on the satellite and the tidal bodily and surface

displacements of the solid Earth. We also emphasized the role of static and

tidal variations in internal density, as well as the role of layers of discontinuity

in the formation of the exterior tidal potential. The parameters of the Earth's

elastic response to tidal forces of a given frequency appear in the present ex-

pansion of the tidal potential in a natural way. They are represented as a sum of

the two terms. The first term reflects the influence of the tidal change in the in-

ternal density and the second term carries the influence of the tidal "buldges."

The dependence of the elastic parameters (Love numbers) on the local coordi-

nates on the Earth surface may, in fact, reflect the asymmetric and inhomo-

geneous structure of the interior of the Earth.*) The differential equations of

tidal oscillations we develop in the present article are valid for the laterally

heterogeneous Earth and for the presence of initial deviatory stress.

Like all equations of other theories of tidal oscillations they can be inte-

grated only numerically.

*D. E. Smith. Private communication. 1972.
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